Lubrication of Steam, Gas and Water Turbines in Power Generation - a Chevrontexaco Experience
نویسنده
چکیده
On 9 October 2001 two US oil companies Chevron and Texaco merged. Their long-term joint venture operation, known as Caltex (formed in 1936 and operating in East and Southern Africa, Middle East, Asia and Australasia), was incorporated into the one global energy company. This global enterprise will be highly competitive across all energy sectors, as the new company brings together a wealth of talents, shared values and a strong commitment to developing vital energy resources around the globe. Worldwide, ChevronTexaco is the third largest publicly traded company in terms of oil and gas reserves, with some 11.8 billion barrels of oil and gas equivalent. It is the fourth largest producer, with daily production of 2.7 million barrels. The company also has 22 refineries and more than 21,000 branded service stations worldwide. This paper will review the fundamentals of lubrication as they apply to the components of turbines. It will then look at three turbine types, steam, gas and water, to address the different needs of lubricating oils and the appropriate specifications for each. The significance of oil testing both for product development and in-service oil monitoring will be reviewed, together with the supporting field experience of ChevronTexaco. The environmental emissions controls on turbines and any impact on the lubricants will be discussed. Finally, the trends in specifications for lubricating oils to address the modern turbines designs will be reviewed.
منابع مشابه
Optimization and increase production and efficiency of gas turbines GE-F9 using Media evaporative cooler in Fars combined cycle power plant
Gas turbines play an important role in supplying power for the country especially in peak electricity load. The main disadvantages are the turbines, they produce large changes are a result of climate change. However, in times of peak electricity grid and at the same time warm months, can produce gas turbines under the effect of ambient temperature, the amount of reduced considerably. The method...
متن کاملTechnical Analysis of Conversion of A Steam Power Plant to Combined Cycle, Using Two Types of Heavy Duty Gas Turbines
Due to long life of steam power plants in Iran, transformation of steam cycles to combined cycles is under consideration. Bandar-Abbas steam power plant with capacity of 320 MW has been analyzed in this work. This old plant is located near the harbor city of Bandar-Abbas at southern Iran. Method of exergy analysis is used to study the current and the repowered systems. Optimum state of the repo...
متن کاملSimulation and Optimization of Tehran Oil Refinery Steam Network in view of Exergetic, Exergoeconomic and Environmental Analysis
Due to the importance of energy consumption in a steam network of oil refinery as a significant unit, present study is concerned with the optimization of an oil refinery steam network. Here, the attempt was made to use concepts such as first and second thermodynamic laws, thermo-economic, environmental and economic discussions to investigate three different scenarios about Tehran refinery steam...
متن کاملPerformance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems — Part 1: The desalination unit and its combination with a steam-injected gas turbine power system
Humidified gas turbines (HGT) have been identified as a promising way of producing power. The use of the steaminjected gas turbine (STIG) HGT cycle in a combined power and water desalination system was analyzed using energy and exergy performance criteria. A brief description and rationale of the background of HGT cycles and dual-purpose power and water systems is given. A thermal desalination ...
متن کاملThermodynamic and Exergy Analysis of a Combined Power and Desalination Plant
Making potable water through desalination plants is a very important process in Iran where clean water is highly required. On the other hand, large amount of fossil fuel sources leads to the development of gas turbine power plants all over the country. Furthermore, Persian Gulf in the south and Caspian Sea in the north could be the main sources for supplying potable water in water scarcity area...
متن کامل